

VYTAUTAS MAGNUS UNIVERSITY FACULTY OF FOREST SCIENCE AND ECOLOGY

Tree species: resilience to future climate change and biodiversity conservation -Hemiboreal forest perspective

GEDIMINAS BRAZAITIS

2025-01-28

Climate change and biodiversity conservation

We are faced in two global crisis

Often forest management ideas support mitigation of climate change, however suggested solutions might reduce biodiversity status;

Need to find solutions to solve both crises simultaneously.

BIOCLIMATIC MAP OF EUROPE

THERMOCLIMATIC BELTS

SALVADOR RIVAS-MARTÍNEZ, ANGEL PENAS and TOMÁS E. DÍAZ (2004, July, 15)

Scale 1:16.000.000 Cartogr Equidistant Conic Projection

Cartographic Service, University of León, Spain. (2004, August, 30)

	Bioclimates	Bioclimatic thresholds			
	Variants	Itc	Tp (1)		
	MEDITERRANEAN				
Im 📕	Inframediterranean	450 - 580	> 2450		
Tm 📕	Thermomediterranean	350 - 450	> 2150		
Mm	Mesomediterranean	220 - 350	>1500		
Sm 📒	Supramediterranean	< 220	> 900		
Om 📕	Oromediterranean	-	450 - 900		
Cm 📃	Cryoromediterranean	-	1 - 450		
	TEMPERATE				
it 📃	Infratemperate	410 - 480	> 2350		
sm 📐	Infra-submediterranean (2)				
Tt	Thermotemperate	300 - 410	> 2000		
Tsm	Thermo-submediterranean (2)	1705-0 C 1555-0	100000		
Mt	Mesotemperate	180 - 300	> 1400		
Msm N	Meso-submediterranean (2)				
St	Supratemperate	< 180	> 800		
Ssm	Supra-submediterranean (2)				
Dt 📕	Orotemperate		380 - 800		
Osm 🔣	Oro-submediterranean (2)		200 000		
Ct	Cryorotemperate	-	1 - 380		
Csm	Hemiboreal (3)				
Hb	Cryoro-submediterranean (2)		-		
	BOREAL				
Tb	Thermoboreal		680-800		
db	Mesoboreal	-	580-680		
Sb	Supraboreal		480-580		
Ob 👘	Oroboreal	-	380-480		
СЬ	Cryoroboreal	-	1 - 380		
	POLAR				
Тр	Thermopolar		230-380		
Mp	Mesopolar	-	80 - 230		
Sp 📗	Suprapolar	-	1 - 80		
	(1) Tp used if Ic > 21 or Hc < 120				
	(2) Conditions: Temperate submediterranean; Iosi : P < 2.5T				
	(3) North of 45°N: lc < 21, alt. < 400 m., Tp 720-900; Ic21-28, alt. < 1.000 m., Tp 780-900; Ic21-28, alt. < 1.000 m., The 780-900;				

Mean annual temperature in Vilnius 1778-2021 yrs.

Mean annual precipitation in Vilnius 1887-2021 yrs.

DE MARTONNE ARIDITY INDEX IN LITHUANIA: 1981-2010 – 41,3 1991-2020 – 39,9 ← → C O A ≅ ⊙ https://fitzlab.shinyapps.io/cityapp/

3

🖸 ITPAGALBA 🔰 PAGALBA 🧃 OFFICE365 📮 PRINT 🚾 VDU 💮 EKSPERTINIO VERTINI... 💮 LMT EKSPERTU DUOM... 🌗 eco2adapt - Home 🧊 Intranetas - Home

3

🖸 ITPAGALBA 🤴 PAGALBA 🧯 OFFICE365 🔍 PRINT 🔤 VDU 🕀 EKSPERTINIO VERTINI... 🕀 LMT EKSPERTŲ DUOM... 🧐 eco2adapt - Home 🕼 Intranetas - Home

Loga

Leaflet | @ OpenStreetMap contributors

ibcalta

Climate change and biodiversity conservation

Special focus on tree species

Tools suggested for closer-to-nature forestry adapting climate change:

Increase tree species richness (native, mid European) Increase stand structural diversity (enabling space for tree species diversity) Maintain and increase genetic variation within tree species

Monospecific (1 species) vs. Mixed forest (2 and more species)

Mixed forest – often studied two species stands

FIGURE 2 Location of the 87 triplets corresponding to the three transects: beech-pine, oak-pine (red), spruce-pine (green). Bottom-right panel shows the distribution of triplets by average site temperature (axis *x*) and precipitation (axis *y*).

Pretzsch et al. 2015

Del Rio et al. 2022

Different than monospecific in processes, growth, resilience and require more complex management; The effect depends on complementarity of species, more efficient use recourses such as light and water; Stands has higher structural complexity that positively associated with higher biodiversity; Stands often more productive, especially in sites with higher water availability; More resistant to droughts, however more severe droughts decrease positive effect; No 100% guarantee, many depends on local management, site conditions, land use history, etc.

FIGURE 3 Overyielding (red diamonds) and temporal stability of stand growth (grey quadrats) for the three types of mixtures: beech-pine, oak-pine, sprucepine (mean and standard error). Temporal stability is given for monospecific and mixed stands. Green arrows indicate significant stabilizing effects by mixing species, and grey arrows indicate nonsignificant effects (Table S4).

Del Rio, M. et al. 2022

- Lots of studies of two species mixtures;
- Semi-natural forests often consist of >2 species;
- Lack of multi-species stand studies as such complex structures were avoided and eliminated by long-lasting forest management;
- Study in SW Lithuania of protected forests.

Mixed forests – stand characteristics

Totally inventoried 16 tree species (total area - 29.1ha),

Maximal number of species per plot – 10 tree species (DBH>10 cm);

Mostly common mixtures 3-5(6) tree species (plot area - 500m²)

N. of tree	N. of	Tree species												-				
species in	plots	Total N.	Pic	Bet	Car	Qur	Aln	Fra	Рор	Til	Ace	Ulm	Sal	Mal	Pin	Sor	Pru	Sal
plot			abi	spp.	bet	rob	glu	exe	tre	cor	pla	min	сар	syl	syl	auc	pad	fra
1	8	8		1	1		5	1										
2	46	92	18	15	12	10	18	4	6	8					1			
3	134	402	89	66	48	49	55	21	27	38	1	1	1	1	1	1	1	2
4	164	656	130	105	79	69	70	58	47	61	15	5	4	3	7	3		
5	129	645	114	98	75	83	60	61	58	46	14	20	5	4	4	2	1	
6	67	402	62	57	42	46	36	46	43	29	13	15	4	5		2	1	1
7	28	196	24	25	23	20	14	22	24	16	7	7	5	4		2	2	1
8	5	40	5	5	4	5	3	3	4	2	3	2	1	1		2		
10	1	10	1	1	1	1	1	1			1	1	1				1	
Totally:	582	2451	443	373	285	283	262	217	209	200	54	51	21	18	13	12	6	4

Mixed forests – stand characteristics

Estimated means of the Richness of species in

8

Reserved

>15yr

<15 yr.

6

stand (top), the Dominating tree species (mid) and the Richness of light-demanding species (bottom) in GLMM predicting stand volume. Continuous predictors were set at the following values: Equitability=0.687; Age=83,29.

Mixed forests – stand characteristics

Left: Estimated means of fixed effects in GLMM evaluating the proportion of recently eliminated tree volume. Continuous predictors were set at the following values: Equitability=0.748; Basal area=27.88

Right: Estimated means of fixed effects in GLMM evaluating the proportion of recently eliminated tree number. Continuous predictors were set at the following values: Equitability=0.748, Basal area=27.88; Age=83.29

INCREASE TREE SPECIES RICHNESS

We need to increase shade tolerant tree species diversity Two shade-tolerant key tree species in Europe

Caption: Frequency of *Picea abies* occurrences within the field observations as reported by the National Forest Inventories. The chorology of the native spatial range for *P. abies* is derived after EUFORGEN³⁹.

Frequency of Fagus sylvatica occurrences within the field observations as reported by the National Forest Inventories. The chorology of the native spatial range for F. sylvatica is derived after Meusel and Jäger, and EUFORGEN^{27, 28}.

< 25%

25% - 50%

50% - 75%

https://www.euforgen.org/

Norway spruce problematic

Czech, Šumava National Park, 2022

Norway spruce problematic

Immediate attacked spruce neutralization – debarking

Expensive and time-consuming action, could be applied in limited extent

Norway spruce problematic - solutions

Decreasing rotation age is not solution.

Mixed uneven age stands with proportion of trees with the risk age <20%.

Poland, Bialowieza forest

Fagus sylvatica

reported by the National Forest Inventories. The chorology of the native spatial range for *F. sylvatica* is derived after Meusel and Jäger, and EUFORGEN^{27, 28}.

https://forest.jrc.ec.europa.eu/media/atlas/Fagus_sylvatica.pdf

How to support translocation (assisted migration)

Slow process, long adaptation period with climatic extreme testing (winter temperatures).

Mixing experiments: Beech mixed with eight native tree species; Established in 2021; Two regions in Lithuania.

	200										
25	Р	P+Bu	A+Bu	A	L	J+Bu	M+Bu	М			
25	Е	E+Bu	L+Bu	L	D	D+Bu	B+Bu	В			
25	м	M+Bu	1Bu	5Bu	XBu	2Bu	L+Bu	L			
25	В	B+Bu	3Bu	2Bu	3Bu	4Bu	J+Bu		00		
25	J	J+Bu	5Bu	1Bu	4Bu	1Bu	A+Bu	A	20		
25	D	D+Bu	4Bu	2Bu	5Bu	3Bu	P+Bu	Р			
25	А	A+Bu	B+Bu	В	м	M+Bu	E+Bu	E	一		
25	L	L+Bu	P+Bu	Р	E	E+Bu	D+Bu	D			
	25	25	25	25	25	25	25	25	N.		

MAINTAIN AND INCREASE GENETIC VARIATION

How to adopt *Quercus robur?*

Often suggested "Climate envelope" method translocating seeds from the regions with similar current to forecasted future climatic conditions.

MAINTAIN AND INCREASE GENETIC VARIATION

Genetic diversity of Quercus robur in Lithuania

MAINTAIN AND INCREASE GENETIC VARIATION

Genetic diversity of Norway maple *Acer platanoides* and genetic groups respond to precipitation, temperature and drought.

Developed GLMM models of *Acer platanoides* genetic group respond to climatic factors. The number corresponds priority inclusion into the model. Dark green – significant effect, light green – close to significant. Models selected using AIC criteria, step-wise forward modelling applied.

Genetic recourses zoning in Lithuania

The effect of overabundance of deer's

Short term effect

Long term effect

The effect of overabundance of deer's

Thank You!